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From kinks to compactonlike kinks
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We show that, in the continuum limit, the generalizedF-four or double-well model with nonlinear coupling
can exhibit compactonlike kink solutions for some specific velocity regimes and when the nonlinear coupling
between pendulums is dominant. Our numerical simulations point out that the static compacton is stable and
the dynamic compacton is unstable. Our study is extended to other topological systems where compacton
solutions can also be found. A nice feature is that a mechanical analog of the double-well system can be
constructed in the form of an experimental lattice of coupled pendulums, which, in the strong coupling limit,
allows the observation of these entities.@S1063-651X~98!00502-9#

PACS number~s!: 03.40.Kf, 46.30.My
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I. INTRODUCTION

Solitary waves and solitons play a significant role in va
ous physical problems. In this context kinks in on
dimensional systems have been used to describe various
nomena such as ferromagnetic@1,2# or ferroelectric domains
walls @3#, dislocations@4#, dynamics of base pairs in DNA
macromolecules@5#, polymer chain twistings@6# and Joseph-
son junctions@7#. The basic models are generalized Klei
Gordon models where the particles may be considered
coupled to nearest neighbors only, via an interaction po
tial U(un112un) and subjected to a nonlinear on-site
substrate potentialV(un), whereun(t) is the on-site degree
of freedom, which represents the influence of the surrou
ing lattice atoms and external effects. The lattice Ham
tonian is

H5(
n

F1

2 S dun

dt D 2

1U~un112un!1V~un!G . ~1!

The corresponding equations of motion can be written in
standard form

d2un

dt2
2@U8~un112un!2U8~un212un!#1V8~un!50.

~2!

Depending on the shape of the on-site potential, a nonlin
lattice with the Hamiltonian~1! may sustain different kinds
of nonlinear excitations. IfV(un) has two degenerate minim
~a double-well shape like in theF-four model! or multiple
degenerate minima~a periodic shape like in the Frenke
Kontorova model! topological kink excitations, which con
nect two equivalent ground states, can exist. If interpart
interactionsU8 are linear, the kink solutions can be calc
lated exactly, in the continuum limit@3#; for the discrete
equations~2! the kink solutions can be obtained either
perturbation approaches@8# or by numerical techniques. I
U8 also includes anharmonic interactions, specific kink
ternal modes may be created@9#. The case whereU8 is non-
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linear only is interesting because of the presence of nonlin
dispersion. Recently it was shown by Rosenau and Hym
@10# that solitary-wave solutions may compactify under t
influence of nonlinear dispersion, which is capable of ca
ing deep qualitative changes in the nature of genuinely n
linear phenomena. Such robust solitonlike solutions, cha
terized by the absence of the infinite tail, have been ca
compactons@10,11#. They have been obtained for a spec
class of the Korteweg–de Vries~KdV!-type equations with
nonlinear dispersion. In this paper we would like to sho
that compactonlike kinks, or compactons for short, can e
for specific velocities in physical systems modeled by a n
linear Klein-Gordon equation with anharmonic couplin
Part of the motivation of this work finds its origin in th
possibility of observing kinks in ‘‘real systems’’ with a
double-well potential. In this regard, a nice feature is tha
mechanical analog can be constructed, allowing one to
serve compactons.

The paper is organized as follows. In Sec. II, we sh
that a generalizedF-four model with nonlinear coupling
may exhibit compacton solutions. We then investigate
merically the existence and stability of these compact e
ties. Such compactonlike kink solutions can be obtained
other nonlinear topological systems, as presented in Sec
In Sec. IV we present an experimental lattice of coup
pendulums which allows us to observe kink solitary wav
and compactons. Section V is devoted to concluding
marks.

II. GENERALIZED F-FOUR MODEL

A. Analytical results

Consider the generalizedF-four lattice with on-site po-
tential

V~un!5
V0

2
~12un

2!2 ~3!

and interaction potential
2320 © 1998 The American Physical Society
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57 2321FROM KINKS TO COMPACTONLIKE KINKS
U~un112un!5
Cl

2
~un112un!21

Cnl

4
~un112un!4.

~4!

Here,V0 , Cl , andCnl are constants that control the potent
barrier height of the double well potential and the strength
the linear and nonlinear couplings, respectively. In this ca
the equation of motion~2! of the nth particle becomes

d2un

dt2
5Cl~un111un2122un!1Cnl@~un112un!3

1~un212un!3#12V0~un2un
3!. ~5!

For 2V0@Cl and Cnl , un varies slowly from one site to
another, and one can use the standard continuum approx
tion un(t)→u(x,t) and expandun61 . Under these condi-
tions, settingX5x/a ~that is, measuring the distancex in
units of lattice spacinga!, Eq. ~5! is reduced to

]2u

]t2 2FCl13CnlS ]u

]XD 2G ]2u

]X222V0~u2u3!50. ~6!

Equation ~6! was obtained by assuming th
3Cnl(]u/]X)2(]2u/]X2)@(Cl /12)(]4u/]X4), as will be the
case in the following. Note thatCl represents the square o
the velocity of linear waves in the chain. ForCnl50, Eq.~6!
reduces to the standard continuousF-four model with linear
coupling, which admits tanh-shaped kink solutions.

We then look for localized waves of permanent profile
the form u(s)5u(X2ut), such asu→61 anddu/ds→0,
whens→6`, wheres is a single independent variable d
pending onu which is an arbitrary velocity of propagation
Integrating Eq.~6! and taking account of these condition
we obtain

2~u22Cl !us
223Cnlus

412V0~12u2!250. ~7!

This equation can be integrated foru22Cl50, that is, for the
two particular casesCl50 ~zero linear coupling: linear
waves cannot exist! andu50, andu56ACl , which corre-
spond to kinks with a compact support~see Sec. III! or com-
pactons. One obtains

uc~X!56sin@~2V0/3Cnl!
1/4~X2X0!#, ~8!

whenuX2X0u,1, andu561 otherwise. As usual, the con
stant of integration (X0) defines the position of the center o
the compacton. For the second case we have

u~X,t !56sin@~2V0/3Cnl!
1/4~s2s0!#, ~9!

when uX2ACltu,1, andu561 otherwise. Here one hass
5(X2AClt). From Eqs.~8! and~9! we can calculate the ful
width of the compactons, which in both cases is equal toL
5p(3Cnl/2V0)1/4. Consequently, when there is no line
coupling one has a static compacton~anticompacton! solu-
tion, and, when both linear and nonlinear coupling a
present, a dynamic compacton~anticompacton! solution trav-
eling at particular velocityACl ~or 2ACl! may exist. The
shape of the dynamic compacton is identical to the shap
the static one; it is represented in Fig. 1~a! for s050.
l
f
e,

a-

f

e

of

From the continuum approximation of Eq.~1!, using Eqs.
~3! and~4!, one can calculate the total~kinetic plus potential!
energy localized in the compacton traveling at velocityACl .
One has

Etot5E
2p/2g

p/2g F1

2 S ]u

]t D
2

1
1

2
Cl S ]u

]XD 2

1
1

4
CnlS ]u

]XD 4

1
1

2
V0~12u2!2Ga dX, ~10!

where u is given by Eq. ~8!, and we have setg
5(2V0/3Cnl)

1/4. After simple calculations, we obtain

FIG. 1. Representation of fieldu ~dimensionless! as a function
of position s ~dimensionless!, with s050 ~compacton center! and
a51, corresponding to the wave forms of the compactons for
ferent kinds of on-site potential.~a! F-four potential: solution~17!.
~b! Sinusoidal potential: solutions~19a! and~19b!. ~c! Double qua-
dratic potential: solutions~21a! and ~21b!. For each potential the
S-shaped wave form~continuous line! represents the compact pa
which connects the two constant parts~u561, horizontal dotted
lines! of the solution.
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2322 57S. DUSUEL, P. MICHAUX, AND M. REMOISSENET
Etot5ag
p

2 S Cl1
V0

2 D , ~11!

In the caseu5ACl50, one has

Etot* 5agV0

p

4
, ~12!

which represents the ‘‘mass’’ of a static compacton. N
that the energy is strictly localized and contrary to a stand
~tanh-shaped! kink, which possesses~exponential! wings and
can interact with an antikink, a compacton, and an antico
pacton, will not interact unless they come into contact in
way similar to the contact between two hard spheres. Su
result should be interesting for the modeling of static dom
walls in condensed matter physics.

B. Numerical results

In order to check the validity of our analytical approa
and the stability of our solutions, we performed numeri
simulations of the equation of motion~5! which, in the
strong coupling~continuous! limit, reduces to Eq.~6!. It has
been integrated with a fourth-order Runge-Kutta sche
with a time step chosen to preserve the total energy of
system to an accuracy better than 1025 over a complete run

We first verified the validity of the static compacton (Cl
50) solutionuc given by Eq.~8!. If this solution~with pa-
rametersV052, L532a, andCnl514 500! is chosen as an
initial condition of the system, and allowed to evolve in t
presence of a weak additional dissipation, it relaxes tou
5uc1Du, whereDu are weak spatial sinusoidal deviation
from the exact solution with amplitude 431024. Moreover,
an arbitrary tanh-shaped initial kink also relaxes toward
same profileu, proving thatuc is a good solution to orde
1024. This deviationDu from the exact solution can be re
duced if we choose a compacton with larger widthL, which
indicates that the closer to the continuum limit we are,
better the solution is. Actually, this result points out that t
static compacton is an exact solution of the continuous s
tem.

For ClÞ0, a dynamic compacton~with parametersCl
5208,V052, L532a, andCnl514 500! launched at initial
velocity ACl emits small radiations. Consequently, its velo
ity decreases and we no longer have a dynamic compacto
described by solution~9!, but rather a kink wave form. I
turns out that as soon as they are launched and propa
dynamic compactons, as described by solution~9!, lose their
compact shape; they cannot exist. Then, with the same
rameters as above, we have analyzed the head-on collisio
a compacton~initial velocity v i5ACl! and an anticompacton
~initial velocity v i52ACl!. Our results, represented in Fig
2~a!, show that the collision is inelastic: the two kinks th
emerge from the collision are deformed; they radiate osc
tions and propagate at velocities lower thanACl . In Fig. 2~b!
we represent the collision between a dynamic compac
~initial velocity v i5ACl! and a kink ~initial velocity v i5
20.3ACl!. Again, two deformed kinks emerge from the co
lision.
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III. GENERALIZATION TO OTHER MODELS

As we shall see now, compactonlike solutions can be
tained with interaction potential~4!, but with different on-
site potentialsV(u). These potentials have two or multipl
degenerate minima. We consider three specific potent
the f-four potential ~normalized form of the potential con
sidered in Sec. II! V5(12u2)2, the sinusoidal (sine-
Gordon-type) potential V5 1

2 (11cospu), and thedouble
quadratic potential V5(12uuu)2. The equilibrium positions
are u561, and the barrier height is equal to 1. With a
interaction potentialU of form ~4! and on-site potentia
V(u), in the continuum limit, Eq.~2! may be approximated
by

]2u

]t2 2FCl13Cnl S ]u

]XD 2G ]2u

]X2 1V8~u!50. ~13!

Proceeding as in Sec. II instead of Eq.~7! we obtain

2~u22Cl !us
223Cnlus

414V~u!50, ~14!

As in Sec. II we assumeu22Cl50. Under this, condition
~14! becomes

us5@4V~u!/a#1/4, ~15!

wherea53Cnl .
We now examine what happens foru close to 1~or 21!.

Let u511«, with u«u!1, «<0, and«s>0; Eq.~15! can be
expanded in terms of« to give

«s5F 2

a

d2V

du2G1/4

A2«, ~16!

FIG. 2. ~a! Inelastic head-on collision~see text! between a com-
pacton traveling initially at velocityACl514.4 and an anticompac
ton travelling initially at velocity2ACl . u, n, andt are dimension-
less.~b! Inelastic head-on collision~see text! between a compacton
traveling initially at velocityACl514.4 and an antikink traveling
initially at velocity 20.3ACl . u, n, andt are dimensionless.
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57 2323FROM KINKS TO COMPACTONLIKE KINKS
where the second derivative is considered atu51. Equation
~16! can be integrated easily to give

«~s!52
1

4 S 2

a

d2V

du2 D 1/2

~s2s08!2,

here s08 is a constant of integration. Fors5s08 , one has«
50, which is equivalent tou51. Thus foru22Cl50 the
solution is a kink with a compact support or a compact
Now Eq. ~15! can be integrated for the three specific pote
tials. The results are summarized hereafter.

~i! f-four potential

u~s!5sinF S 4

a D 1/4

~s2s0!G . ~17!

For a53Cnl , this normalized solution~wheres0 is a con-
stant of integration! is identical to Eq.~9!. It was included
here for comparison with the two other potentials.

~ii ! Sinusoidal~sine-Gordon type! potential
With this potential, from Eq.~15! one obtains

us5S 4

a D 1/4S cos
pu

2 D 1/2

, ~18!

When integrating Eq.~18!, we consider two cases:u>0 and
u<0, i.e., s>s0 and s<s0 . Then ~from tables of elliptic
functions! we obtain

u~s!5
2

p
arccosH cn2 Fp2 S 1

a D 1/4

~s2s0!,kG J for s>s0 ,

~19a!

u~s!52
2

p
arccosH cn2Fp2 S 1

a D 1/4

~s2s0!,kG J for s<s0 .

~19b!

where cn is a Jacobi elliptic function with parameterk2

5 1
2 .

~iii ! Double quadratic potential
In this case, one has

us5~4/a!1/4~12uuu2!1/2, ~20!

which is integrated to give

u~s!512F12
1

2 S 4

a D 1/4

~s2s0!G2

for s>s0 , ~21a!

u~s!5211F11
1

2 S 4

a D 1/4

~s2s0!G2

for s<s0 .

~21b!

The compacton wave form corresponding to each of
above solutions is represented in Figs. 1~a!, 1~b!, and 1~c!
respectively. For each potential the S-shaped wave f
~continuous line! represents the compact part which conne
the two constant parts~u561; dotted lines! of the solution.
We see that although the analytical solutions correspond
to each potential are quite different, the shapes of the c
pactons look very similar: in fact, they are not very sensit
to the form of potentialV(u).
.
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IV. MECHANICAL ANALOG

A. Analysis

Analog mechanical systems, such as the experimental
chanical transmission line first introduced by Scott@12#, play
an important role in the study of kink solitons@13# and their
remarkable properties. Thus, in order to observe kinks
compactons, we constructed a mechanical analog which
sists of an experimental chain of identical pendulums,
sketched in Fig. 3. Each basic unit is similar to the pendul
recently studied by Peters@14#: it can oscillate with a motion
whose character is determined by the forces of torsion
gravity in opposition; for the configuration presently cons
ered it possesses two equilibrium positions~two wells!. Each
pendulum is connected to its neighbors by springs. When
dissipation is neglected and the difference between ang
displacement of neighboring pendulums are small enou
the equation of motion of thenth chain unit is given~see the
Appendix! by

I
d2un

dt2
52Kun1mgd sinun1C0,l~un111un2122un!

2C0,nl~un2un11!32C0,nl~un2un21!3, ~22!

where the terms on right hand site represent the resto
torque owing to the torsion, the gravitational torque and
restoring torque owing to the coupling with the neighbori
pendulums~see the Appendix!. un(t) is the angular displace
ment as a function of timet of thenth pendulum,I 5md2 is
the moment of inertia of a single pendulum of massm and
lengthd, g is the gravitation, andK is the torsion constant
C0,l andC0,nl are the linear and nonlinear torque constant
a spring between two pendulums: they are given by

C0,l5kd2 S 12
l 0

l 1
D , ~23a!

FIG. 3. Sketch of the pendulum lattice apparatus. Here only
pendulums,n and n11, coupled to each other by a spring an
attached to the steel ribbons ~parallel tox axis!, are represented
with their respective angular displacementsun andun11 . The pen-
dulums are at equilibrium in one of the two equivalent poten
wells. The motion can occur in a plane perpendicular to the ch
~x axis!; see also Fig. 5~a!.
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C0,nl5kd2 S l 0d2

2l1
3 2

C0,l

6 D ~23b!

where k is the spring stiffness,l 0 the natural length of a
spring at rest, andl l the length of this spring when it is
stretched between two adjacent pendulums at equilibr
~bottom of one well!. Note that the nonlinear coupling term
must be fully taken into account because the linear term
especially small whenl l is not very different froml 0 . More-
over, whenl 05 l l , we haveC0,l50 andC0,nl5kd4/2Kl 1

2, as
we will see in the following.

Setting

t5
K

I
t, G5

mgd

K
, C1,l5

C0,l

K
, Cnl5

C0,nl

K
, ~24!

we transform Eq.~21! into

d2un

dt2 1un2G sin un1C1,l~2un2un112un21!

1Cnl@~un2un11!31~un2un21!3#50. ~25!

In Eq. ~25!, the quantity (2un1G sinun) represents the ‘‘on-
site’’ ~zero coupling limit! torque. In the continuum approxi
mation one obtains

]2u

]t22FC1,l13Cnl S ]u

]XD 2G ]2u

]X2 1u2G sinu50. ~26!

The on-site potential energy, corresponding to Eq.~26! @or
Eq. ~25!# is

V~un!5 1
2 ~un

22um
2 !1G~cosun2cosum!. ~27!

Here the parameterG plays the role of a control paramete
For G.1 it determines the depth and separation of the t
wells @14#, and6um correspond to the two equilibrium po
sitions. Equation~25! and its continuum approximation~27!
cannot be solved analytically. Nevertheless, in order to
tain some approximate solution, one can replace the pote
V(un) by the standardF-four potential given by Eq.~3! with
un→un /um and V052um

212G(cosun2cosum). As de-
picted in Fig. 4, the fitting is good for2um,un,um . Under
these conditions, Eq.~25! reduces to

d2Qn

dT2 1Cl~2Qn2Qn112Qn21!1Cnl@~Qn2Qn11!3

1~Qn2Qn21!3#22V08~Qn2Qn
3!50, ~28!

where Qn5un /um , T5umt, Cl5C1, l /um
2 , and V08

52V0 /um
4 . In the continuum limit, Eq.~28! is approximated

by

]2Q

]T2 2FCl13Cnl S ]Q

]X D 2G ]2Q

]X222V08~Q2Q3!50.

~29!

Equations~28! and~29! are similar to Eqs.~5! and~6!. Thus
Eq. ~29! admits compacton solutions of the forms~8! and
~9!.
m

is

o

-
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B. Apparatus and experiments

The apparatus is a lattice of 20 pendulums attached ver
cally to the center of a horizontal steel ribbon~2 m long, 6
mm wide, and 0.1 mm thick! supported by vertical metallic
plates which are equidistant (a510 cm) ~see Figs. 3 and 5!.
A basic pendulum consists of a thin rod~diameter 3 mm!
along which a cylinder~massm567 g! can be displaced and
fixed. Depending on the vertical positiond of the mass along
the rod, the system can oscillate with a motion which de
pends on the potential shape, and is determined, as me
tioned earlier, by the forces of gravity and torsion in oppo
sition. Here, with d587 mm and K50.03, the control
parameter isG51.9, thus the on-site potential is a symmetric
double-well potential.

Once its tension is adjusted, the ribbon is held tight on th
top of each plate. With this precaution, the torsion constant
the same for each pendulum, and the weak residual torsion
coupling between pendulums can be neglected. Each pen
lum ~cylinder! is attached to its neighbor with a spring.
Springs connecting pendulums that are at equilibrium, in on
of the bottom of a potential well, are horizontal@see Fig.
5~a!#.

With the physical parametersCl50 @l 15 l 0568 mm; see
Eq. ~23a!#, Cnl525, andk5120, a static compacton can be
observed, as represented in Fig. 5~a!. The experimental shape
approximately fits@see Fig. 5~b!# the theoretical shape calcu-
lated from Eq.~9!.

WhenClÞ0 andCnlÞ0, solution~8! predicts a compac-
ton moving at velocityACl of the linear waves. In this case,
we cannot conclude that the moving S-shaped entity we o
serve has a compact shape for the following reasons. Fir
we cannot control with sufficient precision the initial veloc-
ity of the kink. Second, even if we could launch a kink with
exact velocityACl it would gradually slow down owing to
dissipative effects~that are important compared to small ra-
diation effects predicted by our numerical simulations, se
Sec. II B!; thus we can never observe a moving compacto
Nevertheless, with this mechanical line we can easily ob
serve the dynamical properties of the kinks. For example,
one launches a moving kink~unknown analytical shape! with

FIG. 4. Fitting of the double-well potential~27!: dotted line, by
a F-four potential of form ~3!: continuous line. For21.5,un

,1.5 the two curves are practically superimposed and the appro
mation of the double-well potential of the real system by aF-four
potential is justified.
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57 2325FROM KINKS TO COMPACTONLIKE KINKS
arbitrary initial velocity at one end of the line, after reflectio
at the opposite free end this kink becomes an antikink m
ing freely in the opposite direction, and so on. Depending
its initial velocity a kink can reflect three or four times befo
gradually slowing down owing to dissipative effects whi

FIG. 5. ~a! View of a static compacton on the experimen
chain lying horizontally on a table. This compacton connects p
dulums directed to the left~lower part of the photograph!, at equi-
librium in one potential well (Q521), to the pendulums directe
to the right ~upper part of the photograph!, at equilibrium in the
other potential well (Q511). ~b! Comparison of the experimenta
static compacton shape, observed in~a! to the theoretical shape
calculated from Eq.~9!. HereQ5u/um ~with um5p/3! is dimen-
sionless, andX5x/a ~with a510 cm! is dimensionless; the vertica
lines represent the experimental precision.
-
n

inevitably occur for a real mechanical line. With the abo
physical parameters no radiation of waves due to discretn
effects are observed. Thus the continuum approximatio
valid. Nevertheless, lattice effects and also the pinning
kinks can be observed by simply decreasing the stiffnes
the springs; such experiments will be discussed elsewhe

V. CONCLUDING REMARKS

We have shown analytically that, in the continuum lim
theF-four model with nonlinear coupling only can exhibit
static compacton solution. It presents a dynamic compac
solution traveling at the characteristic velocity of line
waves when both linear and nonlinear coupling are pres
Our numerical simulations point out that, contrary to t
static compacton, that is stable, the dynamic compacto
unstable: it loses its compact shape when propagating,
evolves into a kink wave form which is unknown analy
cally. We have also shown that compacton solutions can
calculated for other topological systems with other on-s
potentials such as sinusoidal~sine-Gordon type! or double-
quadratic on-site potential.

In order to observe compactons and kinks, we construc
a mechanical analog which consists of an experimental ch
of identical pendulums that are nonlinearly coupled and
perience a double-well on-site potential of theF-four type.
This analog model allows us to observe, in the strong n
linear coupling limit, static compactons. This experimen
result confirms our numerical simulations results. Our e
perimental model is also convenient to illustrate and stu
qualitatively the dynamical properties of kinks that c
propagate and travel back and forth along the chain. Fina
our analytical, numerical, and experimental study points
that static compactons can exist. Such strictly localized e
ties should play a role in the modeling of domain walls
real systems.
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APPENDIX

In this appendix we derive Eq.~21!. The general equation
of motion of thenth pendulum of the chain represented
Fig. 3 is

I
d2un

dt2
52Kun1mgd sinun1Mn21,n2Mn,n11 ,

whereMn21,n andMn,n11 are the torque exerted by pend
lum n21 on pendulumn and pendulumn on pendulumn
11. In terms of the componentsyn52d sinun and zn
5d cosun of the displacement, the elongation of the spri
~see Fig. 3! between pendulumsn andn11 is

D l 5Al 1
21~yn112yn!21~zn112zn!22 l 0 ,

wherel 0 is the length of the spring at rest, andl 1 the minimal
length of the stretched spring between two pendulums. T
we have

-
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Mn,n115
kD l

V
~yn11zn2ynzn11!,

where

~yn11zn2ynzn11!5d2 sin~un2un11!

and

V5F l 1
214d2 sin2

~un2un11!

2 G21/2

.

One obtains
Mn,n115kd2H 12
l 0

l 1
S 11

4d2

l 1
2 sin2

~un2un11!

2 D 21/2J
3sin~un2un11!.

Mn21,n is obtained by replacingn by n21 in the above
expression. When the difference between the angular
placement of neighboring pendulums is small enou
~weakly discrete limit!, the torques can be replaced by the
expansion in terms of these angular differences, and we
tain Eq.~21!.
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